About 50 results
Open links in new tab
  1. 一文了解Transformer全貌(图解Transformer)

    Sep 26, 2025 · 网上有关Transformer原理的介绍很多,在本文中我们将尽量模型简化,让普通读者也能轻松理解。 1. Transformer整体结构 在机器翻译中,Transformer可以将一种语言翻译成另一种语言, …

  2. 如何最简单、通俗地理解Transformer? - 知乎

    Transformer最开始应用于NLP领域的机器翻译任务,但是它的通用性很好,除了NLP领域的其他任务,经过变体,还可以用于视觉领域,如ViT(Vision Transformer)。 这些特点让Transformer自2017 …

  3. 如何从浅入深理解 Transformer? - 知乎

    Transformer升级之路:1、Sinusoidal位置编码追根溯源 Transformer升级之路:2、博采众长的旋转式位置编码 猛猿:Transformer学习笔记一:Positional Encoding(位置编码) 解密旋转位置编码 解密 …

  4. Transformer模型详解(图解最完整版) - 知乎

    Transformer 的整体结构,左图Encoder和右图Decoder 可以看到 Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。Transformer 的工作流程大体如下: 第一 …

  5. 有没有比较详细通俗易懂的 Transformer 教程? - 知乎

    Transformer目前没有官方中文译名,暂时就叫Transformer吧。 在该论文中,作者主要将Transformer用于机器翻译 [2] 任务,后来研究者们发现Transformer在自然语言处理的很多任务上都展现出了优越 …

  6. 挑战 Transformer:全新架构 Mamba 详解

    Sep 23, 2025 · 而就在最近,一名为 Mamba 的架构似乎打破了这一局面。 与类似规模的 Transformer 相比, Mamba 具有 5 倍的吞吐量, 而且 Mamba-3B 的效果与两倍于其规模的 Transformer 相当。 性 …

  7. MoE和transformer有什么区别和联系? - 知乎

    01. Transformer:像“万能翻译官”的神经网络 Transformer 是当今AI大模型(如ChatGPT)的核心架构,最初用于机器翻译,核心是自注意力机制(Self-Attention),能同时分析句子中所有词的关系,而 …

  8. transformer的细节到底是怎么样的? - 知乎

    近半年来有大量同学来找我问Transformer的一些细节问题,例如Transformer与传统seq2seq RNN的区别、self-attention层的深入理解、masked self-attention的运作机制;以及各种Transformer中的思路如 …

  9. transformer是不是深度神经网络?如果是,请回答为什么是? - 知乎

    Transformer 模型最初由 Vaswani 等人在其2017年的论文《Attention Is All You Need》中提出,它通过使用自注意力(self-attention)机制来捕获输入序列中不同元素之间的全局依赖关系,从而有效处理 …

  10. 想问问 Transformer模型 的参数量是怎么计算的? - 知乎

    想搞明白Transformer的参数量怎么算,千万别抱着啃论文或者看官方代码的态度去硬算,那样很容易把自己绕进去。得抓住主干,把那些“细枝末节”先扔掉。 咱们今天不搞那些花里胡哨的,就掰扯掰扯这 …